482 research outputs found

    Engineering Study of the SIS100 Radiation Resistant Quadrupole Magnet Environment

    Get PDF

    Immunohistochemical analysis of spinal cord components in mouse model of experimental autoimmune encephalomyelitis

    Get PDF
    Introduction. Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model for studying immunopathology of multiple sclerosis (MS) because it repeats the hallmarks of the human disease, such as focal inflammation and demyelination of the central nervous system, subsequently leading to axonal and neuronal loss. The interrelationships, timing and sequence of different pathological processes that lead to histologically observed lesions in SM are still incompletely understood.Material and methods. EAE was induced in female C57Bl/6 mice by active immunization with MOG35-55 antigen. Development of the neurological symptoms in the animals was monitored and on that basis spinal cords were collected in three successive phases of the disease (onset, peak, chronic). Total leukocytes, T cells, macrophages/microglia, oligodendrocytes, damaged axons and surviving neuronal cell bodies were visualized using appropriate immunohistochemical markers and their density was quantitatively assessed using image analysis software.Results. The density of all studied cells except neurons was significantly higher in EAE mice than in the control mice. The density of total leukocytes, T cells, and damaged axons increased from the onset to the peak phase and decreased in the chronic phase to reach values lower than those in the peak phase. The density of macrophages/microglia increased in the peak phase and remained at the elevated level in the chronic phase. Oligodendrocytes showed the highest density in the onset phase and gradually decreased afterwards. The density of neuronal cell bodies decreased only in the chronic phase of the disease.Conclusions. In mouse model of EAE, inflammatory cells predominate in the early phases of the disease. This study shows for the first time that inflammation precedes oligodendrocyte death and neuronal loss and that macrophages/ microglia are the only cells persisting in large numbers in the chronic phase of the disease, probably because of the switch from proinflammatory to anti-inflammatory phenotype

    Capability-based governance patterns over the product life-cycle: an agent-based model

    Get PDF
    In recent literature, there is disagreement over the temporal pattern of vertical governance of firms over the product life-cycle. We use a novel neo-Schumpeterian agent-based simulation model to investigate emerging patterns of vertical governance for different levels of imitability and substitutability of capabilities. We find that, in the mature phase of the product life-cycle, firms generally prefer vertical specialization. However, in the early phase, imitability and substitutability, in interplay, determine the governance form preferred. High imitability frustrates appropriation and thereby discourages integration for synergistic advantages. However, firms need not vertically specialize: under low substitutability, incompatibilities reduce the advantages of specialization. When both substitutability and imitability are low, firms can appropriate the value of their inventions and there is no combinatorial advantage of specialization, so firms predominantly integrate. If substitutability is high and imitability is low, the combinatorial advantage of specialization balances with the synergistic advantage of integration

    Capability-based governance patterns over the product life-cycle

    Get PDF
    We investigate patterns of vertical governance over the product life-cycle as function of the capability regime properties imitability and substitutability. We use a novel neo-Schumpeterian model to study emerging governance patterns. We find that, in the era of incremental change, firms prefer vertical specialization. In the era of ferment, no governance form dominates. Imitability and substitutability, in interplay, determine the governance form preferred. High imitability frustrates appropriation and thereby integration for synergistic advantages. However, firms need not vertically specialize: under low substitutability, incompatibilities reduce the advantages of specialization. When both substitutability and imitability are low, firms can appropriate the value of their inventions and there is no combinatorial advantage of specialization, so firms predominantly integrate. If substitutability is high and imitability is low, the combinatorial advantage of specialization balances with the synergistic advantage of integration

    Raman scattering in high temperature superconductors : An integrated view

    Full text link
    The common features in the Raman data of high temperature superconductors: (the cuprates, bismathates, alkali doped fullerides and some organic superconductors), are analyzed. It was shown that qualitative understanding of the data can be achieved in terms of non-Fermi liquid models for their normal state, with appropiate bag mechanisms for the superconducting state.Comment: To appear in Physica B (1996). Invited talk presented by S. N. Behera, Latex file in revtex style, six figures available on request to first author (e-mail : [email protected]

    Spin-Charge Coupling in lightly doped Nd2−x_{2-x}Cex_{x}CuO4_4

    Full text link
    We use neutron scattering to study the influence of a magnetic field on spin structures of Nd2_2CuO4_4. On cooling from room temperature, Nd2_2CuO4_4 goes through a series of antiferromagnetic (AF) phase transitions with different noncollinear spin structures. While a c-axis aligned magnetic field does not alter the basic zero-field noncollinear spin structures, a field parallel to the CuO2_2 plane can transform the noncollinear structure to a collinear one ("spin-flop" transition), induce magnetic disorder along the c-axis, and cause hysteresis in the AF phase transitions. By comparing these results directly to the magnetoresistance (MR) measurements of Nd1.975_{1.975}Ce0.025_{0.025}CuO4_4, which has essentially the same AF structures as Nd2_2CuO4_4, we find that a magnetic-field-induced spin-flop transition, AF phase hysteresis, and spin c-axis disorder all affect the transport properties of the material. Our results thus provide direct evidence for the existence of a strong spin-charge coupling in electron-doped copper oxides.Comment: 12 pages, 12 figure

    Polaronic optical absorption in electron-doped and hole-doped cuprates

    Full text link
    Polaronic features similar to those previously observed in the photoinduced spectra of cuprates have been detected in the reflectivity spectra of chemically doped parent compounds of high-critical-temperature superconductors, both nn-type and pp-type. In Nd2_2CuO4−y_{4-y} these features, whose intensities depend both on doping and temperature, include local vibrational modes in the far infrared and a broad band centered at ∼\sim 1000 cm−1^{-1}. The latter band is produced by the overtones of two (or three) local modes and is well described in terms of a small-polaron model, with a binding energy of about 500 cm−1^{-1}. Most of the above infrared features are shown to survive in the metallic phase of Nd2−x_{2-x}Cex_xCu04−y_{4-y}, Bi2_2Sr2_2CuO6_6, and YBa2_2Cu3_3O7−y_{7-y}, where they appear as extra-Drude peaks. The occurrence of polarons is attributed to local modes strongly coupled to carriers, as shown by a comparison with tunneling results.Comment: File latex, 31 p., submitted to Physical Review B. Figures may be faxed upon reques
    • …
    corecore